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EFFECT OF WING STALLING I N  TRANSITION ON A l/J+-SCALE MODEL 

OF THE VZ-2 AIRCRArm 

By Robert 0. Schade and Robert H. Kirby 
Larigley Research Center 

SUMMARY 

An experimental f l i g h t  invest igat ion has been conducted t o  determine the 
dynanic l a t e r a l  s t a b i l i t y  and control charac te r i s t ics  of a remotely controlled 
1/4-scale model of the VZ-2 t i l t -wing  vertical-take-off-and-landing a i r c r a f t .  
The model w a s  equipped with a f'ull-span s lo t t ed  f l a p  and a Krueger ty-pe nose 
f l a p .  The investigation included both leve l - f l igh t  and descent conditions over 
the t r a n s i t i o n  range where wing s t a l l i n g  occurred. 

Fl ight  t e s t s  of the model i n  the f laps-retracted configuration indicated 
t h a t  the model had poor l a t e r a l  f l i g h t  charac te r i s t ics  i n  l e v e l  f l i g h t  and t h a t  
these charac te r i s t ics  became worse during descent. These poor l a t e r a l  charac- 
t e r i s t i c s  generally consisted of wing dropping and e r r a t i c  large-amplitude 
yawing motions normally associated with wing s ta l l .  The full-span s lo t t ed  f l a p  
and the Krueger type nose f l a p  when used i n  combination resul ted i n  l a rge  
improvements i n  l a t e r a l  f l i g h t  charac te r i s t ics  i n  both l e v e l  and descent 
f l i g h t s .  When the two types of f l a p s  were used separately the l a t e r a l  f l i g h t  
charac te r i s t ics  did .not improve as much as when the f l a p s  were used i n  combi- 
nation. O f  the two types of f laps ,  the full-span s l o t t e d  f l a p  produced the 
grea tes t  improvement i n  l a t e r a l  f l i g h t  character is t ics .  Use of the full-span 
s lo t t ed  f lap ,  however, caused a considerable reduction i n  longitudinal f l i g h t  
cha rac t e r i s t i c s .  When the mode of propeller ro ta t ion  w a s  such t h a t  the blades 
were going upward a t  the wing t i p s  the wing-dropping tendency w a s  worse but the 
yawing charac te r i s t ics  were b e t t e r  than when the blades were going downward a t  
the wing t i p s .  

INTRODUCTION 

Flight t e s t s  of the o r ig ina l  VZ-2 t i l t -wing vertical-take-off-and-landing 
(VTOL) a i r c r a f t ,  described i n  reference 1, showed tha t  the a i r c r a f t  had 
unacceptable l a t e r a l  s t a b i l i t y  and control Characterist ics i n  the t rans i t ion  
f l i g h t  conditions i n  a speed range of approximately 40 t o  70 knots which corre- 
sponded t o  a range of wing incidence from approximately 4 5 O  t o  2 5 O .  The d i f f i -  
c u l t i e s  resul ted from wing s t a l l i n g  and were more severe f o r  descent conditions 
than f o r  leve l - f l igh t  or climb conditions. The use of a wing-section modifica- 
t i o n  consisting of a modest amount of leading-edge droop and an increase i n  



nose radius w a s  found t o  r e l i eve  the l a t e r a l  s t a b i l i t y  and control troubles t o  
a considerable extent .  

The tendency toward wing s ta l l  i n  the  t r a n s i t i o n  range f o r  t i l t -wing VTOL 
a i r c r a f t  had been recognized from wind-tunnel t e s t s  as pointed out i n  refer- 
ences 2 t o  4.  The e f f e c t  of t h i s  s t a l l i n g  on the  l i f t ,  drag, and power 
required, and, consequently, on short-take-off-and-landing (STOL) and engine- 
out performance had been appreciated f o r  some t i m e .  
devices, both trail ing-edge f l a p s  and leading-edge devices, had been recommended 
t o  re l ieve the wing s t a l l i n g  by increasing the  l i f t i n g  capabi l i ty  of the wing. 
With the use of these h i g h - l i f t  devices, the wing can produce more of the l i f t  
required of the wing-propeller system and thereby reduce the  angle of a t tack of 
the wing-propeller combination as explained i n  d e t a i l  i n  reference 4. 
r e s u l t  of t h i s  wind-tunnel work the a i r c r a f t  w a s  modified by the addition of a 
l a rge  f l a p  t o  determine the e f f ec t  of such a f l a p  on the lateral  handling 
q u a l i t i e s  i n  the t r a n s i t i o n  range. 

The use of h i g h - l i f t  

A s  a 

The significance of the wing s t a l l i n g  on handling q u a l i t i e s  had not been 
f u l l y  appreciated u n t i l  the f l i g h t  t e s t s  were made; nor had it been recognized 
i n  f ree- f l igh t  model tests of t i l t -wing VTOL a i r c r a f t ,  even i n  t e s t s  of a model 
o f  the VZ-2 reported i n  reference 5 .  I n  the VZ-2 model t e s t s ,  e r r a t i c  yawing 
motions i n  t r a n s i t i o n  had been noted but had been a t t r ibu ted  only t o  low direc- 
t i ona l  s t a b i l i t y .  The f a c t  t h a t  the l a t e r a l  s t a b i l i t y  and control troubles 
caused by wing s t a l l i n g  had not been f u l l y  appreciated i n  the f r e e - f l i g h t  model 
t e s t s  might have resu l ted  from the f a c t  t h a t  the model had been flown only i n  
l e v e l  f l i g h t  where the range of unacceptable behavior occurred over a range of 
on ly  about 7 O  wing incidence and from the f a c t  t h a t  the model had passed through 
t h i s  range i n  3 o r  4 seconds i n  the process of making the t r a n s i t i o n  from 
hovering t o  normal forward f l i g h t  and had not been flown f o r  protracted periods 
of time i n  t h i s  range. 

A s  a r e s u l t  of the foregoing experience, an investigation has been made 
with the l /b-scale f r e e - f l i g h t  model of the VZ-2 used i n  the previous invest i -  
gations of references 5 t o  10 t o  determine: f irst ,  i f ,  upon close examination 
of the range of f l i g h t  conditions i n  which the l a t e r a l  s t a b i l i t y  and control 
d i f f i c u l t i e s  associated with s t d l i n g  had been observed i n  f l i g h t ,  the  same 
objectionable charac te r i s t ics  could be observed with a f ree- f l igh t  model; and, 
second, i f  the d i f f i c u l t i e s  could be recognized, whether the charac te r i s t ics  
would be improved by the use of the wing f l a p s  t h a t  were t o  be i n s t a l l e d  on the 
fu l l - s ca l e  a i r c r a f t  as a modification. 

One phase of t h i s  investigation, reported i n  reference 11, dea l t  with 
r e s u l t s  of force tes ts  of the model with a full-span s l o t t e d  f lap ,  leading-edge 
droop, and full-span ai lerons.  The other phase of the investigation, discussed 
i n  the present paper, consisted of f l i g h t  t e s t s  of the model with a full-span 
s lo t t ed  f l a p  and with and without a full-span Krueger type nose f l ap .  These 
f l i g h t  t e s t s  included both l e v e l  f l i g h t  and simulated descent f l i g h t  over a 
range of airspeeds i n  which wing s t a l l i n g  might be expected t o  occur. The s i m -  
u la t ion  of the descent conditions where the wing s t a l l i n g  had been found t o  
cause the most objectionable handling q u a l i t i e s  i n  the  fu l l - s ca l e  f l i g h t  tests 
required the development of a new f ree- f l igh t  model t es t  technique which i s  
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described herein. The research r e s u l t s  were obtained mainly from p i l o t s '  
ra t ings  of the various conditions tes ted  and from motion-picture records of the 
f l i g h t s .  

SYMBOLS 

C 

i 
W 

Ma 

t 

V 

a 

P 

6f 

Id 

wing chord, ft  

wing incidence, deg 

s ta t i  c longitudinal s t  a b i l i t y  parameter , f t-lb/deg 

time, sec 

scaled-up a i r c r a f t  velocity, knots 

angle of a t tack of fuselage, deg 

angle of s idesl ip ,  deg 

f l a p  deflection, deg 

angle of roll, deg 

APPARATUS AND TESTS 

Model 

A photograph of the l /h-scale model of the VZ-2 t i l t -wing VTOL a i r c r a f t  
with the full-span f l a p  deflected i s  shown as f igure 1 and a three-view sketch 
showing-the more important dimensions i s  shown as f igure 2.  During some of the 
t e s t s  the model w a s  equipped with a full-span Krueger type nose f lap ,  the 
d e t a i l s  of which a re  given i n  f igure 3 .  Tables I and I1 give the geometric and 
m a s s  chazacter is t ics  of the model. The geometric changes which have been made 
t o  the or iginal  VZ-2 model t o  simulate the fu l l - s ca l e  a i r c r a f t  i n  i t s  present 
modified configuration can be readi ly  seen by comparing f igure 2 and t a b l e  I 
of the present paper with f igure 1 and t ab le  I of reference 10. For the  pur- 
pose of t h i s  paper, the main change w a s  the i n s t a l l a t i o n  of the full-span 
s l o t t e d  f l a p  which resul ted i n  a 10-percent increase i n  the  wing chord when the 
f l a p  w a s  i n  the re t rac ted  posi t ion.  "he model had two three-blade propel lers  
with flapping hinges and w a s  powered by a 6-horsepower pneumatic motor which 
drove the  propel lers  through shafting and right-angle gear boxes. The speed of 
the motor w a s  changed t o  vary the t h r u s t  of the propellers.  Longitudinal con- 
t r o l  w a s  obtained by a j e t  reaction control a t  the r ea r  of the fuselage. La t -  
eral  control w a s  obtained by varying the  p i t c h  of the propel lers  d i f f e r e n t i a l l y  
and no sep'arate. d i r e c t i o n d  control w a s  used. 
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The controls were def lected by f l icker- type ( fu l l -on  o r  W l - o f f )  pneumatic 
actuators  which were remotely operated by the  p i l o t s  by m e a n s  of solenoid- 
operated valves. The control actuators  w e r e  equipped with integrating-type 
trimmers which trimmed the  controls a s m a l l  amount each t i m e  a control w a s  
applied. With actuators  of t h i s  type, a model becomes accurately trimmed a f t e r  
f ly ing  a short  t i m e  i n  a given f l i g h t  condition. 

Test Setup and Equipment 

The t e s t  setup used i n  the  t r ans i t i on  f l i g h t  tests i n  the  Langley full-  
scale  tunnel w a s  e s sen t i a l ly  the same as t h a t  i l l u s t r a t e d  by the sketch shown 
i n  f igure 4. The power f o r  the  wing-t i l t ing motor and e l e c t r i c  control sole- 
noids w a s  supplied through wires, and the  air f o r  the  main propulsion motor, 
the control actuators,  and t a i l  control j e t  w a s  supplied through f l ex ib l e  
p l a s t i c  tubes. These wires and tubes were suspended from above and taped t o  a 
safety cable (1/16-inch braided a i r c r a f t  cable) from a point  about 15 f e e t  
above the  model down t o  the  model i t s e l f ,  The safe ty  cable, which w a s  at tached 
t o  the fuselage near the  center o f  gravity,  w a s  used t o  prevent crashes i n  the  
event of a control f a i l u r e  or  i n  the event t h a t  t he  p i l o t s  l o s t  control of the 
model. During f l i g h t ,  the  cable w a s  kept slack so t h a t  it did not appreciably 
influence the motions of the  model. Separate p i l o t s  controlled the  model 
l a t e r a l l y  and longi tudinal ly ,  since it had been found t h a t  i f  a s ingle  p i l o t  
operated all controls,  he w a s  so  busy control l ing the  model t h a t  he had d i f f i -  
cu l ty  i n  ascer ta ining the  s t a b i l i t y  and control cha rac t e r i s t i c s  of the  model 
about i t s  various axes. 

In  order t o  s i m u l a t e  descent-fl ight conditions the  model w a s  equipped with 
an auxi l ia ry  compressed-air j e t  exhausting rearward from the  rear of the  fuse- 
lage .  This auxiliary j e t  t h rus t  enabled the  model t o  be flown i n  steady l e v e l  
f l i g h t  with the higher wing incidences and lower propel ler  thrust se t t i ngs  tha t  
would normally correspond t o  descent conditions. Figure 5 i l l u s t r a t e s  t he  ba l -  
ance of forces  obtained i n  the actual  descent and simulated descent f l i g h t s .  
In  actual  descent f l i g h t  ( f i g .  3 (a ) ) ,  equilibrium i s  obtained when the f l i g h t  
path i s  incl ined downward t o . t h e  angle a t  which the  forward component of the 
weight balances the drag and the  normal component of the  weight balances the 
l i f t .  
the fu l l - sca le  tunnel where the  airstream i s  always horizontal ,  it i s  necessary 
t o  f l y  the model at  the  same l i f t  and same drag. In  order t o  obtain equilibrium 
for  t h i s  condition a t h r u s t  force must be added as shown i n  f igure 5 ( b ) .  In  
the present t e s t s  t h i s  t h rus t  w a s  added by an auxi l ia ry  compressed-air j e t  
exhausting from the  r e a r  of the model so t h a t  it has a minimum e f fec t  on the  
aerodynamics of the  model. 

I n  order t o  simulate t h i s  condition aerodynamically i n  f l i g h t  tgsts i n  

This simple representat ion of the descent condition i s  val id  only f o r  
s m a l l  descent angles where the cosine of the descent angle i s  approximately 
equal t o  one. In  order t o  obtain simulation f o r  l a rge  descent angles it would 
be necessary t o  inc l ine  the j e t  t h r u s t  vector t o  the  f l i g h t  direct ion i n  such 
a way as t o  compensate f o r  the f a c t  t h a t  the  l i f t  should, i n  t ru th ,  be equal 
only t o  the normal component of the weight as shown i n  f igure  5(a) .  
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Tests 

F l igh t  t e s t s  were made t o  determine the  dynamic s t a b i l i t y  and control 
charac te r i s t ics  of t he  model at  the  intermediate t r a n s i t i o n  speeds which corre- 
sponded t o  fu l l - sca le  speeds of 37, 44, 50, 57, and 65 knots for the  f laps-  
re t rac ted  configuration and 37, 44, and 57 knots f o r  the  f laps-def lected con- 
f igurat ions.  
f l i g h t  with the  fuselage at a = 00 and i n  simulated descent conditions at  
rates of descent which corresponded t o  fu l l - sca le  values between 760 and 
1000 f e e t  per minute. These t e s t s  were made f o r  the f laps- re t rac ted  configu- 
ra t ion,  f o r  a configuration with the  full-span s lo t t ed  f l a p  set at 400 deflec- 
t ion,  and f o r  each of these configurations with a ful l -span Krueger type nose 
f l a p  s e t  at 1 1 5 O  def lect ion.  

A t  each of these airspeeds the  model w a s  flown i n  steady l e v e l  

In  all the  t e s t s ,  lateral control w a s  obtained by varying the  p i t ch  of the 

propel lers  d i f f e r e n t i a l l y  3- lo . No separate yaw control w a s  used because at 
2 

these wing incidences the variable p i t ch  propel lers  gave approximately the cor- 
r e c t  amount of r o l l i n g  moment and yawing moment f o r  coordinated control.  
tudinal  control w a s  obtained by a j e t  react ion control at  the  r ea r  of the 
fuselage with a control force of f 5 . O  percent of the  model weight. 

Longi- 

The center of gravi ty  f o r  these t e s t s  w a s  3.4 percent chord ahead of the  
The pivot when the w i n g  w a s  i n  the hovering f l i g h t  posi t ion (860 incidence).  

center of gravi ty  moved as the wing w a s  t i l t e d  approximately as shown i n  
reference 11. 

The invest igat ion consisted primarily of t e s t s  made t o  study the  l a t e r a l  
charac te r i s t ics  of the  VZ-2 a i r c r a f t  i n  t he  wing s t a l l  region, bu t  some data 
and observations of the  longi tudinal  s t a b i l i t y  and t r i m  charac te r i s t ics  were 
obtained i n  the process. The f l i g h t  t e s t  r e s u l t s  were pr imari ly  i n  the form 
o f  qua l i ta t ive  ra t ings  of f l i g h t  behavior based on p i l o t  opinion. 
l a t e r a l  s t a b i l i t y  t e s t s ,  however, motion-picture records were used t o  ver i fy  
and correlate  the  r a t ings  f o r  the d i f f e ren t  f l i g h t  conditions and a few t i m e  
h i s t o r i e s  of the  model motions have been read from the  mGtion-picture records. 

For the  

RESULTS AND DISCUSSION 

Rating System 

A p i l o t  r a t ing  system has been used f o r  many years as a means of expressing 
the  r e s u l t s  of f r ee - f l i gh t  model tests which a re  l a rge ly  i n  the  form of p i l o t  
opinion, as shown i n  reference 12. The r a t ings  were expressed i n  terms of  
l e t te rs  (A, B, C ,  and D with -I- and - signs used f o r  f i n e r  graduation) and they 
w e r e  described only as "good, fair, poor, and unflyable." 

A s  a r e s u l t  of t h e  wide acceptance of the Cooper pilot-opinion r a t ing  sys- 
t e m  i n  fu l l - s ca l e  f l i g h t  t es t  work, an attempt has been made i n  the present 
invest igat ion t o  ad jus t  the flying-model p i l o t  r a t ing  system t o  conform with 
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t he  Cooper r a t ing  system described i n  reference 13.  This change has involved 
the use of a numerical r a t ing  scale  and more de ta i led  descr ipt ion of the  ra t ing .  

This revised f ly ing  model p i l o t  r a t ing  system i s  shown i n  t ab le  I11 where 
it i s  compared with the  Cooper r a t ing  system. The i n t e n t  of the  model ra t ings  
i s  t o  consider the behavior of the model t h a t  would represent the  behavior 
required of an a i r c r a f t  t o  meet all the  Conditions given f o r  the Cooper r a t ing  
system - t h a t  i s ,  whether the  mission could be accomplished, t he  a i r c r a f t  
landed, and the  a i r c r a f t  acceptable f o r  normal operating conditions o r  emergency 
conditions, and so fo r th .  The ratings f o r  the  model are  l imi ted  t o  the  s t ab i l -  
i t y  and control aspects of f ly ing  qua l i t i e s  since the  remote control p i l o t  i s  
unable t o  sense buffeting and other f ac to r s  t h a t  a f f e c t  the ra t ings  of  the  
p i l o t  i n  a fu l l - sca l e  a i r c r a f t .  The descr ipt ion of the  model r a t ings  d i f f e r s  
from t h a t  of t he  Cooper r a t ings  because of t he  p i l o t  not being i n  the model, 
the dynamic e f f e c t s  of the small scale  of the model, differences i n  p i lo t ing  
technique, t he  l imi ted  m e u v e r s  t h a t  can be performed with the model, and the 
l imi ted  task  assigned t o  the p i l o t  of the  model. 

An indicat ion of how w e l l  p i l o t  ra t ings  obtained with a f ly ing  model cor- 
r e l a t e  with r a t ings  f o r  a fu l l - sca le  a i r c r a f t  might be obtained from figure 6 
which shows the  p i l o t  r a t ings  f o r  the  present  VZ-2 f ly ing  model superimposed 
on the f ly ing-qual i t ies  boundaries obtained i n  f l i g h t  tests of the  fu l l - sca le  
a i rplane as reported i n  reference 14. 

The model r a t ings  presented i n  figure 6 show t h a t  f o r  the  l eve l - f l i gh t  
t e s t  condition, i n  the  range of ve loc i t ies  where the  a i r c r a f t  exhibited wing 
s ta l l  problems, the  model had poor lateral  f l i g h t  behavior with i t s  worst f l i g h t  
behavior at  approximately 58 knots. 
f l i g h t  test results t h a t  showed i n  l e v e l  f l i g h t  the  r a t e  of descent boundary o r  
the worst f l i g h t  behavior region extended from approximately 54 t o  65 knots. 
I n  the descent tes ts  between 760 and 1000 ft/min all the  r a t ings  indicated 
worsening f l i g h t  behavior as would be expected f ' rom the  expanded r a t e  of 
descent boundary. A t  the  lower airspeeds the  excursions i n  yaw tended t o  
become l a r g e r  and as a r e s u l t  g rea t ly  influenced the establishment of the  over- 
a31 ra t ings .  It i s  f e l t  t h a t  i f  a separate yaw control had been used i n  an 
e f f o r t  t o  minimize these extremely l a rge  motions these r a t ings  could possibly 
have been improved. It may be noted t h a t  i n  the  region within the  r a t e  of 
descent boundary the f ly ing  model r a t ings  did not ind ica te  as severe lateral  
problems as those indicated f o r  the  a i r c r a f t  by the  unacceptable dangerous 
region (approximately a Cooper p i l o t  r a t ing  of 8) .  
ra t ings  f o r  the  a i r c r a f t  may have be'en the result of the  severe buffet ing i n  
t h i s  region which i n  tu rn  influenced the p i l o t s '  ra t ings .  
not be observed or evaluated i n  the  model r a t ing  because of the  p i l o t ' s  remote 
loca t ion .  

This result agrees with the  full-scale 

The poorer f l i g h t  behavior 

This buffet ing could 

Other than t h i s  i n a b i l i t y  t o  observe and evaluate the  buffet ing problem, 
the  r e s u l t s  of these model t e s t s  f o r  both l e v e l  and descent f l i g h t  i n  the  wing 
stall region appeared t o  be quite similar t o  the  a i r c r a f t .  The unacceptable 
l a t e r a l  f l i g h t  behavior i n  both cases w a s  characterized by in te rmi t ten t  wing 
dropping and wide and e r r a t i c  excursions i n  yaw ( s ides l ip ) .  
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It should be noted t h a t  t he  fu l l - sca le  f ly ing-qual i t ies  boundaries shown 
i n  figure 6 were f o r  the  VZ-2 a i r c r a f t  i n  i t s  o r ig ina l  configuration, whereas 
the  model r a t ings  are for t he  present modified model. Figure 7 shows a com- 
parison of the  results of t u f t  tests made with the  o r ig ina l  fv l l - s ca l e  a i r c r a f t  
( r e f .  15) and t u f t  tests made with the  present model with the ful l -span s l o t t e d  
f l a p  i n s t a l l e d  i n  the r e t r ac t ed  pos i t ion  which resu l ted  i n  a 10-percent increase 
i n  the  chord of the  wing. The flow pa t te rns  of f igure  7 show the same gross 
e f fec t ,  f o r  both the  a i r c r a f t  and model, of good flow over the outboard w i n g  
sections and l a rge  areas  of disturbed o r  s t a l l e d  flow between the  nacel les .  
Although these areas do not agree i n  detai l ,  both the  a i r c r a f t  and model expe- 
rienced unsymmetrical s t a l l i n g  over the same general areas and seem t o  correlate  
with the f a c t  t h a t  the  handling qua l i t i e s  w e r e  generally s imilar .  

Presentation of Model Results 

A l l  t he  parameters used i n  t h i s  f l i g h t  invest igat ion have been scaled up 
t o  a f l i i l -scale  a i rplane weight of 3450 pounds. The results of the  model tests 
t o  determine the  e f f e c t s  of modifications t o  the bas ic  configuration are pre- 
sented i n  the form of bar  graphs of the  p i l o t s '  r a t ings  of each t e s t  condition. 
For t h i s  presentat ion the  p i l o t  has separately ra ted  the two most predominate 
l a t e r a l  charac te r i s t ics  found i n  both the model and the  fu l l - sca le  t e s t s  of the 
VZ-2 i n  the wing s ta l l  f l i g h t  range. These charac te r i s t ics  were the  tendency 
of the model t o  have an in te rmi t ten t  wing dropping and the tendency of t he  
model t o  undergo wide e r r a t i c  excursions i n  yaw ( s ides l ip )  and changes i n  t r i m  
i n  yaw. In  order t o  supplement these p i l o t  r a t ings  and t o  i l l u s t r a t e  the model 
motions, representat ive t i m e  h i s t o r i e s  have been read from the  motion-picture 
records. 
p i l o t s '  control appl icat ions.  

These time h i s t o r i e s  show the  r o l l i n g  and yawing motions and the  

L a t e r a l  Behavior 

Flaps-retracted configuration i n  l e v e l  f l i g h t  .- For t he  f laps- re t rac ted  
configuration i n  l e v e l  f l i g h t ,  the  p i l o t  r a t ings  of f igure  8(a) indicate  t h a t  
the model generally had poor f l i g h t  charac te r i s t ics  throughout the range of  
airspeed. 
at the higher speeds and l a rge  e r r a t i c  yawing motions and changes i n  yaw t r i m  
at  the  lower speeds. 
airspeed u n t i l  a t  the  lowest speed (37 knots) very l i t t l e  a t t en t ion  w a s  required 
t o  keep the wings l e v e l .  
the  l e s s  e r r a t i c  var ia t ion  of l i f t  on the  two wing panels when the wing became 
more completely s t a l l e d  at  the lower airspeeds. The yawing motions increased 
as the airspeed decreased u n t i l  at the  lowest airspeed t e s t ed  almost constant 
a t t en t ion  w a s  required t o  keep the model f lying.  
apparently caused, at  least par t ly ,  by low or negative d i rec t iona l  s t a b i l i t y .  

These poor r a t ings  were the  r e s u l t  of a combination of wing dropping 

The wing-dropping tendency decreased with decrease i n  

This improvement i n  roll apparently w a s  the  r e s u l t  of 

This d i f f i c u l t y  i n  yaw w a s  

Two representat ive time h i s t o r i e s  of the  model motions a re  shown i n  
figure 9. 
illustrates the  wing-dropping tendency found at  the  higher airspeeds; and the  
large-amplitude yawing motions showing the  model trinrming from side t o  s ide i n  

The e r r a t i c  r o l l i n g  motion of figure g(b) f o r  a speed of 57 knots 



f igure  g(a) f o r  a speed of 37 knots i l l u s t r a t e s  the  wide e r r a t i c  excursions i n  
y a w  and changes i n  yaw t r i m .  

maps-retracted configuration i n  d e g c e n t z i g h 5 .  - For the  f laps- re t rac ted  

These r a t ings  ind ica te  
For example, at  

configuration, p i l o t  r a t ings  of t h e  model behavior for rates of descent between 
760 and 1000 feet per  minute are shown i n  figure 8(b).  
very poor f l i g h t  charac te r i s t ics  over the  range of airspeeds.  
the  highest  airspeed the wing-dropping tendency made the  model very d i f f i c u l t  
t o  f l y  and at the  lowest airspeed the  yawing tendencies made the  model almost 
unflyable. 
which contributed t o  the  very poor f l i g h t  charac te r i s t ics ;  t h i s  w a s  t he  weak 
control which resu l ted  from the  low propel ler  p i t ch  control effect iveness  at  
the  reduced engine power se t t i ngs  i n  descent f l i g h t .  

The p i l o t  f e l t  t h a t  there  w a s  another f ac to r  other  than wing s ta l l  

When comparing descent with l eve l - f l i gh t  conditions ( f i g .  8) both sets of 
r a t ings  indicate  the  same general trends of w i n g  dropping and yawing motions 
with airspeed. The descent tests, however, showed de f in i t e ly  worse character- 
i s t i c s  f o r  dl conditions tes ted .  

Time h i s t o r i e s  showing the  model motions during descent are presented i n  
figure 10. The much more predominate wing dropping at  57 knots and yawing 
motions at  37 knots fo r  t he  descent t e s t s  are obvious when compared with the 
l eve l - f l i gh t  t i m e  h i s t o r i e s  of figure 9. Another ind ica t ion  of the deteriora- 
t i o n  of the  f l i g h t  cha rac t e r i s t i c s  i n  descent can be seen by comparing the f re -  
quency or amount of control applications.  
w a s  required t o  give two t o  three t i m e s  more control i n  the  descent t e s t s  than 
i n  level f l i g h t .  

These da ta  ind ica te  t h a t  the  p i l o t  

maps-deflected configuration i n  l e v e l  f l i g h t  .- The full-span s l o t t e d  f l a p  
w a s  deflected t o  400 and a full-span Krueger type nose f l a p  w a s  i n s t a l l e d  on 
the  model i n  an e f f o r t  t o  reduce the wing- s t a l l  and improve the model f l i g h t  
charac te r i s t ics .  

Level-fl ight r a t ings  f o r  t h i s  f laps-def lected configuration over t he  same 
speed range as t h a t  covered f o r  the f laps- re t rac ted  configuration are shown i n  
f igure  l l ( a ) .  
charac te r i s t ics  f o r  all conditions tes ted .  The f l a p s  eliminated any tendency 
toward wing dropping and wing stall b u t  did not completely eliminate the  tend- 
ency toward large-amplitude yawing motions. The existence of these yawing 
motions f o r  the  f laps-def lected configuration indicated t h a t  the  model w a s  
d i rec t iona l ly  unstable as it had been for  t he  f laps- re t rac ted  configuration. 
There were no wind-tunnel force t e s t s  t o  support t h i s  conclusion, therefore a 
f e w  f l i g h t  t e s t s  were made with an addi t ional  ventral  f i n ,  1 foot  square, 
located immediately behind the  bas ic  ventral  f i n  shown i n  figure 2. 
were made at  all three speeds normally covered i n  the  t e s t s :  37, 44, and 
57 knots. 
and thereby supported the  conclusion t h a t  the  obSectionable yawing motions had 
resu l ted  primarily from poor d i rec t iona l  s t a b i l i t y .  

I n  general, these r a t ings  ind ica te  t h a t  the model had good f l i g h t  

These tes ts  

The use of t h i s  addi t ional  ta i l  g rea t ly  reduced the yawing motions 

!??he improved f l i g h t  charac te r i s t ics  of the  f laps-def lected configuration 
become very apparent when comparing the  t i m e  h i s t o r i e s  of  figure 1 2  with those 
f o r  the f laps- re t rac ted  configuration ( f i g .  9 ) .  The r o l l i n g  and yawing motions 
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appear much smoother and s teadier  and the p i l o t s '  control applications are  less 
frequent; t h i s  indicates  t h a t  considerably l e s s  e f f o r t  w a s  required t o  maintain 
f l i g h t  than fo r  the f laps-retracted configuration. A n  example of the ease of 
f l i g h t  f o r  the flaps-deflected configuration i s  shown i n  f igure 12(a)  by a 
f a i r l y  long period (approximately 20 seconds) where no control w a s  required. 

maps-deflected configuration i n  descent f l i g h t  .- Flight  ra t ings  i n  
figure - l l (b)  f o r  the r a t e s  of descent between 760 and 1000 fee t  per minute 
indicate t h a t  the flaps-deflected configuration generally had fair f l i g h t  
character is t ics .  When these r e s u l t s  are  compared with the ra t ings  f o r  the 
l e v e l  f l i g h t  condition f o r  the same configuration ( f i g .  l l ( a ) )  it can be seen 
tha t  the model had an increase i n  wing-dropping tendency at the lower airspeeds. 
This r e s u l t  indicates  t h a t  there w a s  some intermit tent  wing stalling f o r  the 
flaps-deflected configuration i n  descent. 
deflected configuration showed increased yawing motions i n  the descent condi- 
t ions.  
became somewhat d i f f i c u l t  t o  f l y .  

Further comparison of the flaps- 

This tendency w a s  most apparent a t  the low airspeed where the model 

Comparison of the two configurations during descent i n  f igures  l l ( b )  and 
8(b) shows t h a t  even though the flaps-deflected configuration exhibited only 
fair f l i g h t  charac te r i s t ics  there w a s  s t i l l  a marked improvement over the flaps- 
re t rac ted  configuration. 

Time h i s to r i e s  f o r  the flaps-deflected configuration i n  descent are  pre- 
sented i n  f igure 13. 
( f i g .  12)  shows modest increases i n  the ro l l i ng  motions or wing-dropping tend- 
encies and some increase i n  the e r r a t i c  nature of the yawing motions at  the 
lowest airspeed. 

Comparison of these data with those f o r  l eve l  f l i g h t  

Comparison of the l a t e r a l  control f o r  the flaps-deflected and flaps- 
re t rac ted  configurations i n  descent f l i g h t  i n  f igures  13 and 10, respectively, 
shows t h a t  much l e s s  control w a s  given by the p i l o t  f o r  the flaps-deflected 
configuration . 

Several descent t e s t s  were made with the s lo t t ed  f l ap  and the Krueger type 
These t e s t s  gave an indicat ion as nose f l a p  deflected separately on the model. 

t o  which f l a p  contributed the most toward s ta l l  a l lev ia t ion  and improvement i n  
f l i g h t  charac te r i s t ics .  The r e s u l t s  of these descent t e s t s  a re  shown i n  the 
p i l o t s '  ra t ings  of f igure 14. 
the full-span s lo t t ed  f l a p  generally gave b e t t e r  f l i g h t  charac te r i s t ics  than the 
full-span Krueger type nose flap. 
worse f l i g h t  charac te r i s t ics  than those obtained when both f l aps  were used i n  
combination ( f ig .  11) , but def in i te ly  be t t e r  f l i g h t  chasac ter i s t ics  than the 
f laps-retracted configuration ( f i g .  8) . 

Fromthese data  it can be seen, t h a t  of the two, 

Each flap when used separately gave somewhat 

Reyexse-d ~~ propeller rotation.-  Since there  has been some consideration on 
t i l t -wing VTOL a i r c r a f t  as t o  the use of propellers ro ta t ing  i n  the opposite 
direct ion from t h a t  shown i n  f igure 2, some b r i e f  tests were made to determine 
the e f f ec t s  of reversed propeller ro ta t ion  on both the level-  and descent-flight 
character is t ics .  
such t h a t  the blades were moving downward a t  the wing t i p s .  
ro t a t ion  the blades were moving upward at the t i p s .  

I n  the bas ic  configuration the mode of propeller ro ta t ion  w a s  

For a l l  conditions tes ted,  
With the reversed 
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which included f l i g h t s  w i t h  and without deflection of the full-span s lo t t ed  
f l a p  and the Dueger  type nose flap,  reversed (up-at-the-tip) propeller ro ta t ion  
generally showed an increased tendency toward wing dropping and an improvement 
i n  the poor yaw charac te r i s t ics .  
caused by the changes i n  the angle of a t tack on the inboard and outboard wing 
panels resu l t ing  from the slipstream rotat ion.  
t i on  on l o c a l  wing angle of a t tack and consequent s t a l l i n g  i s  described i n  
d e t a i l  i n  reference 16. 
ro ta t ion  causes the outboard wing section t o  tend to stall more severely and 
the inboard wing sect ion t o  tend t o  stall l e s s  severely than with the or ig ina l  
propeller rotat ion.  When t h i s  occurs the tendency wi l l  be for the wing dropping 
t o  be more severe because of the increased distance of the s t a l l e d  area from 
the center of gravity,  and f o r  the directionail s t a b i l i t y  t o  be improved because 
of the b e t t e r  airflow behind the l e s s  s t a l l e d  inboard wing i n  the region of the 
ve r t i ca l  tail.  

It appears that  these differences may be 

This e f f ec t  of propeller rota- 

With the reversed propeller rotat ion,  the slipstream 

Longitudinal Behavior 

As pointed out previously t h i s  investigation w a s  carr ied out primarily t o  
study the l a t e r a l  f l i g h t  charac te r i s t ics  of the  VZ-2 a i r c r a f t  i n  the wing-stall 
region, but a few observations of the longitudinal s t a b i l i t y  and t r i m  character- 
i s t i c s  were made and are  reported i n  the following paragraph. 

Very l i t t l e  difference i n  the longitudinal charac te r i s t ics  w a s  noticed 
between l eve l  f l i g h t  and descent f l i g h t  f o r  any of the configurations tes ted.  
Deflection of the full-span s lo t t ed  f lap,  however, caused a deter iorat ion i n  
longitudinal f l i g h t  Characterist ics and resu l ted  i n  the model being more diffi- 
cu l t  t o  control. Force-tests data taken from reference 11 and plot ted i n  
f igure 13 substant ia te  these f l i g h t  tests r e s u l t s  by indicating decreased 
s t a t i c  longitudinal s t a b i l i t y  f o r  the flap-deflected configuration. Use of the 
full-span W e g e r  type nose f l ap  did not appear t o  r e s u l t  i n  any changes i n  the 
longitudinal f l i g h t  charac te r i s t ics .  

The following conclusions are  drawn from the f l i g h t  investigation of a 
l /h-scale f lying model of the VZ-2 a i r c r a f t  over the t r ans i t i on  range where 
wing s t a l l i n g  occurred. 

1. With f l8ps re t rac ted  the model had poor l a t e r a l  f l i g h t  charac te r i s t ics  
i n  l eve l  f l i g h t  and i t s  behavior became very poor during descent f l i g h t .  

2. A combination of the full-span s lo t t ed  f l a p  and Krueger type nose f l ap  
resul ted i n  la rge  improvements of the l a t e r a l  f l i g h t  charac te r i s t ics  i n  both 
leve l - f l igh t  and descent conditions. 

3 .  Either the f'ull-span s lo t ted  f l a p  o r  the  Krueger type nose f l ap  used 
separately improved the l a t e r a l  f l i g h t  charac te r i s t ics  but not as much as 
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the combination of both f laps .  O f  the  two types of f l aps  the full-span s lo t ted  
f l a p  gave the most improvement i n  l a t e r a l  charac te r i s t ics .  

4. When the propeller ro ta t ion  w a s  reversed so t h a t  the upgoing blades 
were outboard the wing-dropping tendency became worse and the yawing character- 
i s t i c s  improved. 

5 .  The f'ull-span s lo t t ed  flap caused a deter iorat ion i n  longitudinal f l i g h t  
character is t ics ,  but the Etweger type nose f l ap  had no apparent e f f ec t  on the 
longitudinal f l i g h t  charac te r i s t ics .  

6. There w a s  very l i t t l e  difference between leve l - f l igh t  and descent con- 
d i t ions  as far as longitudinal f l i g h t  charac te r i s t ics  were concerned. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va. ,  March 16, 1964. 
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GEOMETRIC CKARACTERISTICS O F  THE MODEL 

Propel lers  ( th ree  blades each) : 
Diameter. in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
S o l i d i t y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.239 
Chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.0 

Wing: 
Pivot s ta t ion.  percent chord 
Sweepback (leading edge). deg 
A i r f o i l  sect ion . . . . . . .  
Aspect r a t i o  . . . . . . . .  
Taper r a t i o  . . . . . . . . .  
Area. s q  i n  . . . . . . . . .  
Chord. i n  . . . . . . . . . .  

Span. i n  . . . . . . . . . . .  
Dihedral angle. deg . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  33.7 . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . . . . . . . . . . . . . . . . . . .  Modified NACA 4415 

. . . . . . . . . . . . . . . . . . . . . . . . . .  4.78 . . . . . . . . . . . . . . . . . . . . . . . . . .  15.63 . . . . . . . . . . . . . . . . . . . . . . . . . .  1.0 . . . . . . . . . . . . . . . . . . . . . . . . .  .116  6.5 . . . . . . . . . . . . . . . . . . . . . . . . . .  74.63 . . . . . . . . . . . . . . . . . . . . . . . . . .  0 

Flap : 
Chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 . a  
Chord. percent c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.33 
span. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32.62 
Area. s q  i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 1 6  9.95 

Ver t ica l  tail: 
Sweepback (leading e a e ) .  deg . . . . . . . . . . . . . . . . . . . .  
Root chord (a t  top of fuselage). i n  . . . . . . . . . . . . . . . . .  
Area. s q i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

A i r f o i l  sect ion . . . . . . . . . . . . . . . . . . . . . . . . . .  
Aspect r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Tip chord (extended t o  plane of .hor izonta l  tai l) .  i n  . . . . . . . . .  
T a p e r r a t i o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Span (from top of fuselage t o  plane of horizontal  tail). i n  . . . . .  
Rudder (hinge l i n e  perpendicular t o  fuselage center l i n e ) :  

. . . . . .  28.0 
Modified NACA 0012 . . . . . .  0.85 . . . . . .  23.0 . . . . . .  14.63 . . . . . .  0.64 . . . . . .  301.0 . . . . . .  16 

. . . . . .  5.75 
Span. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14.44 
Area. s q i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75.7 

Horizontal t a i l  : 
Sweepback (leading edge) . deg 
A i r f o i l  sect ion . . . . . . .  
Aspect r a t i o  . . . . . . . .  
Chord. i n  . . . . . . . . . .  
Center-section chord. i n  . . .  
Area (including center body). 
Span. i n  . . . . . . . . . . .  
Dihedral angle. deg . . . . .  

. . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  
sq i n  . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  

. . . . . .  0 
Modified NACA 0012 . . . . . .  2.91 . . . . . .  10.19 . . . . . .  12.63 . . . . . .  323.7 . . . . . .  29.70 . . . . . .  0 

Ventral fin*: 
Chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9.25 
span. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.0 
Area. s q i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37.0 

* A f t  end located on model 11.0 i n  . forward of rudder hinge l i n e  measured along 
bottom of fuselage . 
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S C U D - U P  MASS CHARACTERISTICS OF MODEL 

Gross take-off weight (including one p i l o t  and research 

Rolling moment of i n e r t i a ,  Ix, slug-f t2  (hovering 

Pitching moment of i n e r t i a ,  Iy, slug-ft2 (hovering 

Yawing moment of i ne r t i a ,  Iz, slug-f t2  (hovering 

instrumentation),  l b  3 ,  533 . . . . . . . . . . . . . . . . . . .  
configuration) 3 7 280 . . . . . . . . . . . . . . . . . . . . . .  
configuration) 3 7 890 

configuration) . . . . . . . . . . . . . . . . . . . . . .  57330 

. . . . . . . . . . . . . . . . . . . . . .  



TABLE I11 

COMPARISON OF MODEL M N G  SYSTEM KTH COOPER RATING SYSTEM 

Numerical 
ra t ing  

Cooper pilot-opinion rating system Flying model p i l o t  
ra t ing  system 

Can be Adjective Operating 
conditi ons ' mission landed rating Description Description 

1- '1 1 Extreme1 easy t o  f l  - 
I r e q u i r k  no attent:on t o  
' control 

I B;;imz includes 1 Yes Yes 1 
I 

i 2 i Very easy t o  f l y  - requires 
I i control 

I p rac t ica l ly  no a t ten t ion  t o  

I I 
Zood, pleasant t o  1 Yes I , Yes ~ 

~ Satisfactory 1 "ri* I 1 operation f l y  

Easy t o  f l y  - requires very 
l i t t l e  a t ten t ion  t o  control i 3 1  

Not d i f f i c u l t  t o  f l  - I requires a t t e n t i o i  t o  I co i t ro l  
I 

5 i Not too d i f f i c u l t  t o  f l y  - 
I , requires considerable 
I ~ a t ten t ion  t o  control 

Di f f icu l t  t o  f l y  - requires 
almost constant a t ten t ion  

I t o  maintain f l i g h t  

7 ' Ve d i f f i cu l t  t o  f l  - I :quires constant Yatention 
1 t o  maintain f l i gh t  

Extremely d i f f i c u l t  t o  f l y  - 
flyable only with maximum 
a t ten t ion  given t o  maintain 

' f l i g h t  

9 Unfl able - cannot be flown I e d n  with maximum a t ten t ion  
1 given t o  maintaining f l i g h t  
r 

10 1 Catastrophic - model 

I destruction 

Satisfactory, but with 
some mildly unpleasant 
characterist ics 

I 

Acceptable, but with 
unpleasant character- 
i s t i c s  

Unacceptable f o r  Doubtful Yes 
normal operation /Unsatisfactory ~ E$lergency operation 

I 

Acceptable f o r  Doubtful Yes i 
emergency condition I 

only1 I 

Unacceptable even fo r  Doubtful 1 
emergency condition1 

Unacceptable - No No 
dangerous Unacceptable 

I No I operat ion 

Unacceptable - I No 
uncontrollable 

- 

I I 1 No 1 Catastrophic 

~ i No 

Motions possibly 
violent enough t o  
prevent p i l o t  escape 

h a i l u r e  of s t a b i l i t y  augmenter. 



L-61-3172 
Figure 1.- Photograph of t h e  1/4-sca.le model of t h e  VZ-2 t i l t - w i n g  VTOL a i r c r a f t  w i t h  fu l l - span  f l a p  and a i l e rons .  
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Figure 2.- Three-view sketch of model. A l l  dimensions a re  i n  inches. 
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Slot Contour 
Station Ordinate 

11,800 
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12.400 .480 
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Figure 3 . -  Geometric characteristics of wing. All dimensions are in inches. 
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Figure 4.- Sketch of t he  f l i g h t  t e s t  setup i n  the  Langley f'ull-scale tunnel.  
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( a )  Descent f l i g h t .  (b) Simulated descent f l i g h t .  

Figure 5.- Balance of  forces  for  descent f l i g h t  and simulated descent f l i g h t .  
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Figure 6.- Rating of t he  l a t e r a l  f l i g h t  behavior of t he  model f o r  both level and descent f l i g h t  compared with the  f ly ing  
q u a l i t i e s  r a t e  of descent boundary and descr ip t ive  r a t i n g s  for  the  fu l l - s ca l e  VZ-2 a i r c r a f t .  
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Figure 7.- Comparison of wing flow patterns between original full-scale VZ-2 (ref. 15) and present model. 
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Unflyable 9 

7 Very d i f f i c u l t  
t o  f l y  

Not t o o  d i f f i c u l t  5 
t o  f l y  

Easy t o  f l y  3 

Extremely easy  1 
t o  f l y  

- ., 

- 1  
37 44 

v, knots  

(a) Level f l i g h t .  

~ 57 

I] Yawing moments 

ml Wing dropping 

37 

(b) Descent f l i g h t .  

57 

Figure 8.- P i l o t  r a t ings  of t he  wing-dropping and yawing tendencies fo r  t he  flaps-retracted configuration. 
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(b) V = 57 knots. 

Figure 9.- Time histories of model motions. Flap-retracted configuration; l e v e l  f l i g h t .  
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(b) V = 57 knots .  

Figure 10.- Time h i s t o r i e s  of model motions. Flap-retracted configuration; descent f l i g h t .  
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Figure 11.- P i l o t  ra t ings  of  the  wing-dropping and yawing tendencies for the  model with a fW.1-span s l o t t e d  f l a p  
def lected bo0, and a ful l -span Krueger type nose f l a p .  
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Figure 12.-  Time h i s t o r i e s  of model motions. Full-span s l o t t e d  f l ap  de i l ec t ed  40°; Krueger type 
nose flap; l e v e l  f l i g h t .  
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(b) V = 57 knots.  

Figure 13.-  Time h i s t o r i e s  of model motions. Full-span s l o t t e d  flap de f l ec t ed  40'; Krueger type 
nose f l ap ;  descent f l i g h t .  
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Figure 14.-  Descent p i l o t  r a t ings  of  t he  wing-dropping and yawing tendencies. 
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Figure 15.- Variat ion of t h e  s t a t i c  l ong i tud ina l  s t a b i l i t y  parameter with ve loc i ty .  
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